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ANSWER‌ ‌ 

1a.‌‌ ‌Which‌ ‌of‌ ‌the‌ ‌two‌ ‌event‌ ‌releases‌  ‌more‌ ‌energy?‌ ‌Write‌ ‌E‌SN‌‌ ‌or‌ ‌E‌GW‌.‌ ‌ ‌   

‌5M C 0M C 62M C3 ⨀
2 + 3 ⨀

2 =   ⨀
2 + EGW   [1‌ ‌point]‌ ‌ ‌   

M C3 ⨀
2 = EGW ‌   ‌[0.5‌ ‌points]‌ ‌ 

‌.989×10  kgM⨀ = 1 30  

‌                                                   ‌[0.5‌ ‌points]‌ ‌(1.989×10  kg)(9×10   )EGW = 3 30 16
s2
m2

 

 ‌                                                                               ‌[1‌ ‌point]‌ ‌.3703×10 JEGW = 5 47  

‌ ‌×10 JEGW = 2 44   

‌ 

GW150914‌ ‌released‌ ‌approximately‌ ‌2865‌ ‌times‌ ‌more‌ ‌energy‌ ‌than‌ ‌a‌‌supernova‌‌                   
explosion.‌ ‌E‌SN‌‌ ‌<<‌ ‌E‌GW‌.‌                                                                                        ‌[1‌ ‌point]‌ ‌ 

‌ 

1b.‌ ‌‌Quantify‌ ‌your‌ ‌answer‌ ‌with‌ ‌an‌ ‌  ‌ratio.‌ ‌ ‌ESN
EGW

   

Based‌ ‌on‌ ‌Einstein’s‌ ‌mass-energy‌ ‌relationship,‌ ‌E=mc‌2‌.‌ ‌The‌ ‌relationship‌ ‌is‌ 
                                                                                               ‌[1‌ ‌point]‌ ‌.7×10ESN

EGW
= 3 4−  



 
 
 Theorical Question  
 

T2: Temperature of the Earth (10 points) 

2a. 

The solar radiation intensity ( IT) received on Earth is:  

𝐼𝑇 =  
𝑃𝑠

4𝜋𝑟𝑠−𝑡
2

= 𝜎𝑇𝑠
4 ∙ (

𝑅𝑠

𝑟𝑠−𝑡
)

2

[𝟏 𝐩𝐨𝐢𝐧𝐭]   

with 

𝑃𝑠 = 4𝜋𝜎𝑅𝑠
2𝑇𝑠

4 

Also, Earth would absorb energy by this rate: 

𝑃𝑎𝑏𝑠 = 𝐼𝑇𝜋𝑅𝑡
2 = 𝜋𝜎𝑇𝑠

4 ∙ (
𝑅𝑠 ∙ 𝑅𝑡

𝑟𝑠−𝑡
)

2

 

With 𝑅𝑡 = 6.4 × 106𝑚 as the radius of the planet “disk”. [1 point] 

Then, by the thermal equilibrium, the absorbed radiation would be radiated over 

the planet’s surface: 

𝑃𝑎𝑏𝑠 = 𝑃𝑟𝑎𝑑  

With 

𝑃𝑟𝑎𝑑 = 4𝜋𝜎𝑅𝑡
2𝑇𝑡

4 

𝜋𝜎𝑇𝑠
4 ∙ (

𝑅𝑠 ∙ 𝑅𝑡

𝑟𝑠−𝑡
)

2

= 4𝜋𝜎𝑅𝑡
2𝑇𝑡

4    [𝟏 𝐩𝐨𝐢𝐧𝐭] 

𝑇𝑡 = 𝑇𝑠 ∙ (
𝑅𝑠

2 𝑟𝑠−𝑡
)

1
2⁄

= 𝟐𝟕𝟖. 𝟓𝟖 𝑲 = 𝟓. 𝟒𝟑 °𝑪    [𝟏 𝒑𝒐𝒊𝒏𝒕] 

This would be very cold but still viable to harbor life. 

2b. 

The Earth’s absorbed radiation, considering the albedo, is: 

𝑃𝑎𝑏𝑠
′ = 0.7 ∙ 𝜋𝜎𝑇𝑠

4 ∙ (
𝑅𝑠 ∙ 𝑅𝑡

𝑟𝑠−𝑡
)

2

[𝟏 𝐩𝐨𝐢𝐧𝐭] 

𝑇𝑇
′ = 𝑇𝑠 (0.7)

1
4⁄ ∙ (

𝑅𝑠

2 𝑟𝑠−𝑡
)

1
2⁄

= 𝟐𝟓𝟒. 𝟖𝟏 𝑲 = −𝟏𝟖. 𝟑𝟒  °𝑪 [𝟏 𝐩𝐨𝐢𝐧𝐭] 

 



 
 
 Theorical Question  
 

 

2c.  

If Earth reabsorbs 58% of the 70% reemitted energy, then:  

𝑇𝑇
′′ = 𝑇𝑠  [0.7 + (0.58 ∙ 0.7)]

1
4⁄ ∙ (

𝑅𝑠

2 𝑟𝑠−𝑡
)

1
2⁄

= 𝟐𝟖𝟓. 𝟔𝟖 𝑲 = 𝟏𝟐. 𝟓𝟑  °𝑪   [𝟒𝒑] 

 

 

 



 
 
 Theorical Question  
 

T3: Mars (10 points) 

3a.  

Since the path between A and B is parabolic, the total energy of the spacecraft is 

zero, 

𝐸𝐴𝐵 = 0,        ↔    𝜀 = 1. 

So, when you get to point B, then 

𝐸 =  
1

2
𝑚𝑣𝐵

2 −
𝐺𝑀𝑚

𝑟𝐵
= 0; 

From where 

𝑣𝐵 =  √
2𝐺𝑀

𝑟𝐵
 

Replacing with available values 

𝑣𝐵 = √
2 × 6,67 × 10−11 × 6,4 × 1023

6,8 × 106
 ≈ 3,54 × 103 m s⁄  

 

 

 

 

For part b, there are two possible solutions 
 
3b. Solution A 

First method: Immediately after breaking the total energy and the angular 
momentum change since the braking force is tangential, but along the elliptical 
path BC the values with which it passes through are conserved and take on during 
the entire journey. C; then applying conservation of energy between points B’ 
(immediately after braking) and C as well as conservation of the angular 
momentum between B' and C, we have 
 

 

 

  [1 point] 

[1 point] 

[1 point] 

  Equation. 1 [1 point] 

  Equation. 2 [1 point] 



 
 
 Theorical Question  
 

 

From these two equations we solve for vC and it's result is used to calculate the 

total energy in C which gives us: 

 

In both methods, this and next, two points for getting the equation and two 

points for calculation + negative sign + unit. 

Second method, solution B, , direct and simple: It is known that in an elliptical 

path the total energy depends on the semi-major axis in the form: 

 

 

 

Since we know the major axis, we know the total energy. Applying in (eq. 3) the 

given values are obtained 

 

 

 

 

3c. 

We also have two methods; either by conservation of energy, or by conservation 

of angular momentum. More direct by the first way, like this: 

 

 

Using the expression (eq.3) in (eq. 4) and solving for vC 

 

 

 

Note that this result is independent of the mass of the ship. Replacing with the 

given values (or using previous results) 

  [2 point] 
Equation. 3 

  -2,10 J [2 point] 

Equation. 4   [1 point] 

  
[1.5 point] 

 

[1.5 point] 



 

    
    
    

    

T4: ALMA - Calculating photons [10 points]   

4a.    

To  get  the  number  of  photons  per  second  we  have  to  multiply  the  Flux  by  

the  area  of  the  dish,  to  know  the  incoming  energy  per  second,  and  divide  
this  by  the  energy of a photon. For λ1 = 0.32 mm = 3.2×10−4m :   

Energy of a photon:   E = hλ
c = 6.2076 × 10−22Jules                  [1 point]   

Area of the disk:   A = πR2 = 113.09 m2   

Number of photons per second:   

 n1 = fluE
x×A≈1820 photon/s

 
    [1   

point]   

4b.   

Same calculation, just changing the energy of the individual photons:   

For λ2 = 8.6 mm = 8.6 × 10−3m   

Energy of a photon:   E = hλ
c = 2.3098 × 10−23Jules       [1 point]    

Number of photons per second:    

 n2 = fluE
x×A ≈ 4900photon/s  [1   

point]   

4c.   

  Spatial resolution of a single telescope is given by:   

θ = 1.22D
λ   

where D represents the diameter of the dish    



 

    
    
    

    

This value will be given in radians, so it must be converted to arcsec afterwards  

For a frequency of 74.9 GHz, the corresponding wavelength is:   

 λ = cf = 4 mm [1   

point]   

And the spatial resolution:   

  arcsec  [1   

point]   

4d.   

For an array the correct expression is:    

θ = Bλ  

being B the longest baseline in the array.   

So in this case:   

 [1 point]   

  arcsec [1   

point]   

4e.   

The SEFD is a characteristic flux of a system, found by dividing the characteristic  
energy associated to the so-called temperature of the antenna by its effective  

area:   

2kTsys 
   SEFD = Ae [1   

point]   

As no additional information is given about the effective area, the actual physical  

area of the array should be used:   

   



 

    
    
    

    

 A = 54 (π×62) + 12(π×3.52)≈6569 m2   [0.5  

point]   

Substituting the Boltzmann constant, the given temperatura of the antenna, and  

converting the answer to Jansky we get:   

 SEFD≈290.46 Jy [0.5   

point]   

NOTES:   

Question   We indicate the answer  

must be:   

Tolerance   

4.a   Approximated to the  

nearest integer   

+/- 10 photons   

4.b   Approximated to the  

nearest integer   

+/- 10 photons   

4.c   2 digit of precision   [83.0 , 85.0]   

4.d   2 digits of precision   0.05 exact   

4.e   2 digit of precision   [289.0 , 291.0]   

 



‌ ‌   
                                     ‌Theorical‌ ‌Question‌ ‌ 

‌ 
‌ 

‌ 
‌ 

Solution.‌ ‌ 

‌ 

5a.‌ ‌Pressure‌ ‌inside‌ ‌the‌ ‌flux‌ ‌tube‌ ‌=‌ ‌Pressure‌ ‌outside‌ ‌the‌ ‌flux‌ ‌tube‌‌                       
(surroundings)‌ ‌ 

‌ 

(‌ ‌Magnetic‌ ‌pressure‌ ‌+‌ ‌Gas‌ ‌pressure‌ ‌inside‌ ‌)‌ ‌=‌ ‌Gas‌ ‌pressure‌ ‌outside‌ ‌ 

‌ 

Particularly,‌ ‌ 

                                        ‌ B
2
0

2μ0
+ P gasin = P gasout     ‌ ‌[2‌ ‌points]‌ ‌ 

‌   ‌                              ‌Eq.‌ ‌(1)‌ ‌B2
0

2μ0
= P 0out

− P 0in
 

‌ 

Similarly,‌ ‌for‌ ‌a‌ ‌particular‌ ‌height‌ ‌z,‌ ‌ 

                              ‌eqn‌ ‌(2)‌               ‌[2‌ ‌points]‌ ‌ 2μ0

B(z)2

= e z H− / P( 0out
− P 0in)  

‌ 

Dividing‌ ‌equation‌ ‌(2)‌ ‌to‌ ‌(1),‌ ‌ 

                                                  ‌[1‌ ‌point]‌ ‌
B2

0

B(z)2

= e z H− /  

To‌ ‌finally‌ ‌get‌ ‌ 

                                             ‌[1‌ ‌point]‌ ‌eB (z) = B0
z 2H− /  

‌ ‌   



‌ ‌   
                                     ‌Theorical‌ ‌Question‌ ‌ 

‌ 
‌ 

‌ 
‌ 

5b.‌‌ ‌  

At‌ ‌ ,‌ ‌ ‌z = H eB = B0
z 150− /  

‌.03 .3 e0 = 0 − z
150  

[1.5‌ ‌points]‌ ‌ 

‌50× n 10 z = 1 ln l  

‌50×2.301z = 1  

[1.5‌ ‌points]‌ ‌ 

‌45.2 kmz = 3  

[1‌ ‌points]‌ ‌ 



‌ 
‌ 
‌ 

‌ 

SOLUTIONS2‌ ‌ 

6a.‌ ‌ 

             ‌‌[1‌ ‌point]‌ ‌    5.8 m  580 nmλ max =   T (K)ef f  

2.898×10 m·K−3
=   4995 K

2.898×10 m·K−3
=   × 10−7 =    

‌ 

6b.‌‌ ‌With‌ ‌the‌ ‌parallax‌ ‌doable‌ ‌to‌ ‌find‌ ‌the‌ ‌distance‌ ‌from‌ ‌Earth:‌‌ ‌  

‌ 

  8.57 pcd =   1
pllx (arcsec) =

1
0.035 arcsec = 2       ‌‌[1‌ ‌point]‌ ‌ 

‌ 
       ‌‌[1‌ ‌point]‌ ‌m 5 log(d[pc])  5  8.3  5 log(28.57)  5  6.02M =   v  −   +   =   −   +   =    

‌ 
‌ 

6c.‌‌           ‌‌[2‌ ‌point]‌ ‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

Each‌ ‌division‌ ‌on‌ ‌Y‌ ‌has‌ ‌0.002‌ ‌kmsˉ¹,‌ ‌so‌ ‌the‌ ‌maximum‌ ‌radial‌ ‌velocity‌ ‌is‌ ‌43.662‌‌                           
kmsˉ¹‌ ‌and‌ ‌the‌ ‌minimus‌ ‌is‌ ‌43.626‌ ‌kmsˉ¹.‌ ‌Then,‌ ‌the‌ ‌mean‌ ‌radial‌ ‌velocity‌ ‌of‌‌                         
Macondo‌ ‌is‌ ‌43.644kmsˉ¹.‌ ‌ 

‌ 

‌ 

‌ 



‌ 
‌ 
‌ 

‌ 

6d.‌ ‌The‌ ‌tangential‌ ‌velocity‌ ‌of‌ ‌Macondo,‌ ‌from‌‌the‌‌plot,‌‌is‌‌its‌‌variation‌‌from‌‌the‌‌                           
mean‌ ‌system‌ ‌velocity‌ ‌(vs‌ ‌=‌ ‌43.662‌ ‌kmsˉ¹‌ ‌-‌ ‌43.644‌ ‌kmsˉ¹‌ ‌=‌ ‌0.018‌ ‌kmsˉ¹).‌ ‌The‌‌                           
masses‌‌of‌‌the‌‌star‌‌and‌‌the‌‌planet‌‌are‌‌known‌‌so‌‌it‌‌is‌‌only‌‌needed‌‌to‌‌find‌‌orbital‌‌                                 
velocity‌‌of‌‌Melquiades.‌‌But‌‌first‌‌it‌‌is‌‌important‌‌to‌‌convert‌‌the‌‌mass‌‌of‌‌the‌‌star‌‌to‌‌                               
kg.‌‌ ‌  

.7M 1.4  kg0
⊙
× 1M

⊙

1.989×10 kg30

 
=   × 1030         ‌‌[1‌ ‌point]‌ ‌ 

‌ 

                          ‌‌[1‌ ‌point]‌ ‌.02 km   40 kmvp  =  
ms
mp

× vs = 7×10  kg26
1.4×10  kg30

× 0 · s−1 =   · s−1  

‌ 
M‌any‌ ‌students‌ ‌will‌ ‌write‌ ‌this‌ ‌as‌ ‌36‌ ‌km/s.‌ ‌We‌ ‌can‌ ‌accept‌ ‌that‌ ‌too.‌ ‌ 

‌ 

6e.‌‌ ‌As‌ ‌the‌ ‌motion‌ ‌of‌ ‌the‌ ‌planet‌ ‌is‌ ‌circular,‌ ‌the‌ ‌orbital‌ ‌period‌ ‌is:‌ ‌ 

‌ T =   vp
2π × a                 ‌‌[1‌ ‌point]‌ ‌ 

being‌ ‌‌a‌‌ ‌the‌ ‌distance‌ ‌to‌ ‌the‌ ‌central‌ ‌star.‌‌ ‌  

‌ 

With‌ ‌the‌ ‌3‌rd‌‌ ‌Kepler’s‌ ‌law,‌ ‌the‌ ‌orbital‌ ‌period‌ ‌is‌ ‌  ‌               ‌‌[1‌ ‌point]‌ ‌T 2 =   4π
2

Gms
× a3     

‌ 
‌ 
‌ 

Then,‌ ‌combining‌ ‌both‌ ‌expressions‌ ‌of‌ ‌‌T‌‌ ‌is‌ ‌possible‌ ‌to‌ ‌find‌ ‌‌a‌ ‌ 

‌ ( vp
2π × a)2 =   4π2Gms

× a3  

‌ 

‌ 

‌ ( vp
2π)2 4π2

Gms = a                   ‌‌[1‌ ‌point]‌ ‌ 

‌  .21×10   m 0.48 au a = 7 10
  =    

With‌ ‌the‌ ‌previous‌ ‌solution‌ ‌is‌ ‌able‌ ‌to‌ ‌find‌ ‌the‌ ‌orbital‌ ‌period:‌ ‌ 

‌    .258  s  145.65 days T =   vp
2π × a =   36000 m·s−1

2π×(7.21x10 m)10

= 1 × 10 
7

=                   ‌‌[1‌ ‌point]‌ ‌ 



‌ 
‌ 
‌ 

‌ 
‌ 

‌ 

‌ 

Finally,‌ ‌with‌ ‌the‌ ‌parallax‌ ‌doable‌ ‌to‌ ‌find‌ ‌the‌ ‌distance‌ ‌from‌ ‌Earth:‌‌ ‌  

                            ‌‌[1‌ ‌point]‌ ‌  8.57 pc  .82  d =   1
pllx (arcsec) =

1
0.035 arcsec = 2 = 8 × 10 m17   

 









 
 
 

 

ANSWER T8: IOAA Logo: (15 points) 

8.1.                                  

Assuming R=6378 km (as per the table of constants)  

Δx = R*[(4,36,18)-(4,35,30)]*π/180 = 1.4842 km                                                                                                       

      

Δy = R*[(74,3,19)-(74,3,15)]*πi*cos(4,35,54)/180 = 0.1237 km                  

     

Δ z = (3.100 - 3.296) = -0.196 km                                                                 [2 pt] 

      

d =   √(𝑥2 + 𝑦2 + 𝑧2) = 1.502 km                                                   [1 pt] 

      

 

8.2 Estimate the angular separation (in degrees) between Guadalupe (point 2) and 

Monserrate (point 3) as observed from the National Astronomical Observatory of 

Colombia (point 1). Taking point 1 as vertex.    

Using same method as part a: 

 

d1-2 = 2.633 km                                                         [2 point] 

      

d1-3 = 2.533 km                                                          [2 point] 

         

Using Cosine rule for spherical triangle, 

cos A = (b^2 + c^2 - a^2)/2bc = 0.8345                                                       [1 point] 

   

A =  33.4°                 [1 point] 

       

 

 

 



 
 
 

 

8.3 

 

∝= 𝑡𝑎𝑛−1 (
−𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝜖+𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜖𝑠𝑖𝑛𝜆

𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝜆
)                                                            [1 pt] 

 

α= 12° 43’ 3” = 0h 50m 52s                       [2 pt] 

𝛿 = 𝑠𝑖𝑛−1(𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝜖 + 𝑐𝑜𝑠𝛽𝑠𝑖𝑛𝜖𝑠𝑖𝑛𝜆)      [1 pt] 

δ=  1° 33’ 43”       [2 pt] 

  

 

 



‌ 
‌ 
‌ 
‌ 

ANSWER‌ ‌TQ9:‌ ‌Pluto‌ ‌Satellites‌  ‌(15‌ ‌points)‌ ‌ 

‌ 

If‌ ‌the‌ ‌student‌ ‌makes‌ ‌this‌ ‌graph‌ ‌they‌ ‌will‌ ‌be‌ ‌recognized‌ ‌ ‌ ‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

Since‌ ‌both‌ ‌bodies‌ ‌move‌ ‌about‌ ‌a‌ ‌common‌ ‌center‌ ‌of‌ ‌mass,‌ ‌point‌ ‌0,‌ ‌see‌ ‌fig.‌ ‌R-distance‌‌                             
between‌ ‌the‌ ‌centers‌ ‌of‌ ‌Pluto‌ ‌and‌ ‌Jaron.‌ ‌x-distance‌ ‌from‌ ‌the‌ ‌center‌ ‌of‌ ‌mass‌ ‌of‌ ‌the‌‌                             
system‌ ‌to‌ ‌Jarón‌ ‌(radius‌ ‌of‌ ‌the‌ ‌orbit‌ ‌of‌ ‌Jarón‌ ‌in‌ ‌this‌ ‌system).‌ ‌Jaron’s‌‌motion‌‌through‌‌a‌‌                               
circular‌ ‌orbit‌ ‌of‌ ‌radius‌ ‌x‌ ‌is‌ ‌given‌ ‌by‌ ‌the‌ ‌equation.‌ ‌ 

 ω xG R2
Mm = m 2 ‌Equation‌ ‌1‌ ‌ 

‌ 

‌ 

F‌pc‌‌ ‌:force‌ ‌exerted‌ ‌by‌ ‌Pluto‌ ‌on‌ ‌a‌ ‌point‌ ‌on‌ ‌the‌ ‌surface‌ ‌of‌ ‌your‌ ‌satellite.‌ ‌ 

F‌jc‌:‌ ‌force‌ ‌exerted‌ ‌by‌ ‌Jaron‌ ‌on‌ ‌a‌ ‌body‌ ‌on‌ ‌its‌ ‌surface.‌ ‌ 

F‌cf‌:‌ ‌centrifugal‌ ‌force‌ ‌acting‌ ‌on‌ ‌the‌ ‌body‌ ‌that‌ ‌is‌ ‌on‌ ‌the‌ ‌surface‌ ‌of‌ ‌ 

Charon,‌ ‌(this‌ ‌is‌ ‌a‌ ‌non-inertial‌ ‌frame‌ ‌of‌ ‌reference,‌ ‌it‌ ‌is‌ ‌rotating‌ ‌with‌ ‌respect‌ ‌to‌ ‌0).‌ ‌ 

‌ 

‌ 



‌ 
‌ 
‌ 
‌ 

‌ 

According‌ ‌to‌ ‌the‌ ‌second‌ ‌law‌ ‌for‌ ‌the‌ ‌point‌ ‌on‌ ‌which‌ ‌they‌ ‌are‌ ‌represented‌ ‌the‌ ‌forces‌‌                             
remain.‌ ‌ 

(x )g1 = Gm
r2 − G M

(R r)− 2 + ω2 − r ‌Equation‌ ‌2‌ ‌ 

‌ 

Where‌‌m-mass‌‌Charon,‌‌M-mass‌‌Pluto,‌‌r‌‌radius‌‌of‌‌Charon.‌‌For‌‌the‌‌other‌‌point‌‌that‌‌is‌‌at‌‌                               
the‌ ‌other‌ ‌end‌ ‌of‌ ‌Charon‌ ‌it‌ ‌remains:‌ ‌ 

(x )g2 = Gm
r2 − G M

(R r)− 2 + ω2 − r ‌Equation‌ ‌3‌ ‌ 

‌ 

The‌ ‌difference‌ ‌between‌ ‌both‌ ‌equations‌ ‌is‌ ‌ 

g M [ ] ω x)Δ   = G 1
(R r)− 2 + 1

(R r)− 2 − 2 2 ‌Equation‌ ‌4‌

‌ 

Taking‌ ‌into‌ ‌account‌ ‌(1)‌ ‌and‌ ‌representing,‌ ‌  ‌,‌  ‌then‌‌ ‌β = r
R   

‌g G [ ] G βΔ   = 2 R2
M 1+β2

(1 β )− 2 2 ≈ 6 R2
M 2  

‌ 

‌ βg
Δg  = G m

r2

6G   βM
R2

2

= 6 m
M 2 = 4 · 10 5−  

‌ 



 SOLUTIONS  [15 points] 

 10a.  The maximum duration occurs if Earth passes exactly  along the 
 diameter of the Sun. Now consider the following figure, where Sun rays 
 are depicted as traveling to the right towards the hypothetical distant 
 observer (reason why they can be considered parallel): 

 The arc along the circumference associated to the transit, 2α, can be easily found 
 looking at the shaded triangle: 

 [2 points] α =  𝑠𝑖𝑛 − 1 (
 𝑅 

 ☉ 

 𝑅 
 𝑜𝑟𝑏 

)

 being R  orb  the orbital radius of the Earth. Now the time of the transit can be 
 found by considering the angular velocity of the Earth, for instance by means of 
 the following proportionality relations: 

 [2 points]                                                                   
 𝑡 

 𝑡𝑟 

 𝑇 
 𝑜𝑟𝑏 

=  2 α
 2 π =

 𝑠𝑖𝑛 − 1 (
 𝑅 

 ☉ 

 𝑅 
 𝑜𝑟𝑏 

)

π

 Substituting with the known values for these quantities we get, i.e., 

 𝑡 
 𝑡𝑟 

∼  12 .  94     ℎ    =     12  ℎ     56  ℎ 

 [1 points] 



 10b.  First  of  all  it  must  be  said  that  the  minimum  orbital  period  is  obtained  if  we 
 assume  that  the  transit  occurs  along  the  diameter  of  the  star.  In  other  cases,  the 
 planet  would  be  crossing  a  shorter  path  in  front  of  the  star  during  the  same  time, 
 meaning  that  it  would  have  a  smaller  angular  velocity  and  therefore  a  longer 
 period. 

 That said, it means that we can resort to the same expression of literal a): 

 Yet this time we need 2 additional elements: 

 * Using the small angle approximation: 

 [1 points]  𝑠𝑖𝑛 (α) ∼ α

 * Invoking the full expression for the orbital period: 

 [1 points]  𝑇 
 𝑜𝑟𝑏 

=  2    π

 𝐺  𝑀 
*

 𝑅 
 𝑜𝑟𝑏 
 3/2 

 Combining these results, we get: 

 [2 points] 

 𝑡 
 𝑡𝑟 

 2    π

 𝐺  𝑀 
*

 𝑅 
 𝑜𝑟𝑏 
 3/2 =

 𝑅 
 ☉ 

 𝑅 
 𝑜𝑟𝑏 

π

 And solving for R  orb  : 

 [2 points]  𝑅 
 𝑜𝑟𝑏 

=
 𝐺  𝑀 

*
 𝑡 

 𝑡𝑟 
 2 

 2  2  𝑅 
*
 2 

 Finally putting this last result back into the expression for the orbital period: 

 [2 points]  𝑇 =
π 𝐺  𝑀 

*

 4  𝑅  3  𝑡 
 𝑡𝑟 
 3 

 At this point, just a numerical evaluation is needed, though a more elegant 
 solution can be achieved by means of scaling relations by noting that this very 



 same expression must be true in the case of the Earth-Sun system as seen from 
 far away. Having that 31 minutes is the 4% of 12.94h: 

 [2 points]  𝑇 =  365 .  25 ·  0 . 1 

 0 . 1  3 ·  0 .  04  3 ∼  2 .  34     𝑑  í  𝑎𝑠 ∼  2  𝑑     8  ℎ     10  𝑚 

 These values were inspired by the planetary system Trappist 1. 
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ASWER‌ ‌TQ11:‌ ‌Minimum‌ ‌velocity‌ ‌of‌ ‌a‌ ‌projectile‌ ‌(15‌ ‌points)‌ ‌ 

‌ 

11.1‌ ‌ 

‌ 
‌ 
‌ 

     ‌[1‌ ‌point]‌ ‌ 
‌ 
‌ 
‌ 
‌ 
‌ 

‌ ‌   
‌ 

‌           ‌‌[1‌ ‌point]‌ ‌M mvE =   − R
GMm + 2

1 2  

At‌ ‌points‌ ‌A‌ ‌and‌ ‌B,‌ ‌the‌ ‌ ‌ ‌‌is‌ ‌the‌ ‌same;‌ ‌so,‌ ‌if‌ ‌  ‌is‌ ‌minimum,‌ ‌EM‌ ‌is‌ ‌minimum:‌ ‌v v  

We‌ ‌know‌ ‌that‌ ‌the‌ ‌mechanical‌ ‌energy‌ ‌for‌ ‌an‌ ‌elliptical‌ ‌orbit‌ ‌is‌ ‌given‌ ‌by:‌ ‌ 

‌                            ‌   ‌‌[1‌ ‌point]‌ ‌ME =   − 2a
GMm  

‌ ‌   

where‌ ‌2a‌ ‌is‌ ‌the‌ ‌length‌ ‌of‌ ‌the‌ ‌major‌ ‌axis‌ ‌ 

Since‌ ‌EM‌ ‌must‌ ‌be‌ ‌minimal,‌ ‌then‌ ‌2a‌ ‌must‌ ‌be‌ ‌minimal‌                          ‌‌[1‌ ‌point]‌ ‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

                                                                                                                          ‌[1‌ ‌point]‌ ‌ 

‌ 

‌ 



‌ 
‌ 
‌ 
‌ 

O:‌ ‌‌Center‌ ‌of‌ ‌the‌ ‌Earth‌ ‌and‌ ‌one‌ ‌of‌ ‌the‌ ‌focus‌ ‌of‌ ‌the‌ ‌ellipse.‌ ‌ 

 ‌F:‌ ‌‌the‌ ‌other‌ ‌focus‌ ‌of‌ ‌the‌ ‌ellipse‌ ‌ 

B F aO + B = 2             ‌[‌1‌ ‌point]‌ ‌ 

‌,‌ ‌must‌ ‌be‌ ‌minimal‌ ‌B F aO + B = 2  

F,‌ ‌takes‌ ‌an‌ ‌arbitrary‌ ‌position,‌ ‌so‌ ‌to‌ ‌minimize,‌ ‌BF‌ ‌must‌ ‌be‌ ‌perpendicular‌ ‌to‌ ‌OF‌ ‌ 

‌ ‌   

‌ 

‌ 

‌ 

‌  [‌2‌ ‌points]‌ ‌ 

‌ 

‌ 

‌ ‌   

‌ ‌   

‌ 

‌ 

‌ 

‌ 

                                                                                                         ‌‌[1‌ ‌point]‌ ‌ 

‌ 

‌ 

‌ 

‌ 

‌ 

‌ 



‌ 
‌ 
‌ 
‌ 

‌ 

‌                                                                       ‌‌[1‌ ‌point]‌ ‌B FO + B = R + R
√2

 

‌ ‌a R2 =   + R
√2

   

This‌ ‌is‌ ‌the‌ ‌minimum‌ ‌value‌ ‌it‌ ‌can‌ ‌take‌ ‌ 

Correspondingly,‌ ‌the‌ ‌expression‌ ‌for‌ ‌the‌ ‌minimum‌ ‌velocity‌ ‌is‌ ‌ 

‌                                                                              ‌‌[1‌ ‌points]‌ ‌ v = √    2GM
(1+  )R √2

 

Using‌ ‌the‌ ‌M‌ ‌and‌ ‌R‌ ‌values‌ ‌for‌ ‌the‌ ‌Earth,‌ ‌the‌ ‌minimum‌ ‌velocity‌ ‌is‌ ‌ 

‌                                                                         ‌‌[1‌ ‌points]‌ ‌199.07 v = 7 s
m  

‌ 

11.2‌ ‌ 

‌ 

Furthermore,‌ ‌ ,‌ ‌where‌ ‌‌e‌‌ ‌is‌ ‌the‌ ‌eccentricity‌ ‌F ∙aO = e  

‌                                                        ‌ ‌[2‌ ‌points]‌ ‌  (1 )R
√2

= e 2
 R + 1

√2
 

‌ 

‌                                                                       ‌‌[1‌ ‌point]‌ ‌.207e = 2
1√2− = 0  

‌ 

‌ 

‌ 



 
 
 

 
ANSWER T12:  

12.1. Solution 

For a satellite that describes a uniform circular motion of radius r around the Sun 

and mass M, we have:  

𝑣 = [𝑅𝐻𝑜𝑑𝑜𝑔𝑟𝑎𝑝ℎ] = √
𝐺𝑀

𝑟
 

 
12.2. Solution 

𝑎⃗ = −
𝐺𝑚

𝑟2
𝑟̂ 

 

𝐿 = 𝑚𝑟2𝜔 

 

→  𝑎⃗ = −
𝐺𝑀𝑚𝜔

𝐿
𝑟̂ =

𝛥 𝑣⃗ 

𝛥𝑡
 

 
𝐺𝑀𝑚

𝐿

𝛥𝜃

𝛥𝑡
 = |

𝛥𝑣

𝛥𝑡
| 

 

𝛥𝑣 = ±
𝐺𝑀𝑚

𝐿
𝛥𝜃  

     

 
12.3. Solution 
 

𝐿 = 𝑚𝑣𝑐𝑅 

 

𝑘𝑐 =
𝐺𝑀𝑚

𝐿
= 𝑣𝑐 = √

𝐺𝑀

𝑅
 

 
 
 
 
 
 

( 1 point) 

( 1 point) 

( 1 point) 

( 2 point) 

( 1 point) 

( 1 point) 

  



 
 
 

 
 
12.4. Solution 
 
In the following scheme, the homographic circumference has been constructed 
as follows: The velocity vector is drawn in arbitrary units (3) corresponding to the 
velocity in the perihelio that is v(θ = 0), its head determines the point A. Then the 
velocity vector is drawn diametrically opposite in the aphelion, that is, v(θ = π) also 
in arbitrary units. Its head determines point B. The hodograph must pass through 
points A and B. Therefore, the radius of the hodograph must be equal to: 
 
 

𝑅𝑎𝑑𝑖𝑜ℎ𝑜𝑑 =
𝑣(𝜃=0) + 𝑣(𝜃=𝜋)

2
 

    
And the “distance” d from the Sun to the center of the circumference will be: 
 
 

𝑑 = 𝑅𝑎𝑑𝑖𝑜ℎ𝑜𝑑 − 𝑣(𝜃=𝜋) =
𝑣𝑝 − 𝑣𝑎

2
 

 
 
where P, is perigee and a is apogee. 
 

 
 
 
 
 
 
 
 
 
 
 
 

12.5. Solution 
 
In the following scheme, the homographic circumference has been constructed 
as follows: The velocity vector is drawn in arbitrary units (4) corresponding to the 
velocity in the perihelio that is 𝑣𝑃 = 𝑣𝜃=0 , its head determines the point A. Then 
the velocity vector is drawn diametrically opposite in the aphelion, that is, v(θ = π) 
= 0. Its head determines the point B that coincides with the Sun. The hodograph 
must pass through points A and B. Therefore, the radius of the hodograph must 
be equal to: 

( 1 point) 

( 1 point) 

( 2 point) 



 
 
 

 
 

𝑅𝑎𝑑𝑖𝑜ℎ𝑜𝑑 =
𝑣𝑝

2
 

 
 
And the distance "d" from the Sun to the center of the hodograph circumference 
 
 

𝑑 = 𝑅𝑎𝑑𝑖𝑜ℎ𝑜𝑑 =
𝑣𝑝

2
 

 
 
          
 
 
 
 

 
 

( 1 point) 

( 1 point) 

( 2 point) 
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T13:‌ ‌Lucy:‌ ‌The‌ ‌First Mission to‌ ‌the‌ ‌Trojan‌ ‌Asteroids‌ ‌(15‌ ‌points)‌ ‌ 

Solutions‌ ‌a.‌ ‌ 

A‌ ‌single‌ ‌electron‌ ‌deposits‌ ‌energy‌ ‌in‌ ‌the‌ ‌CCD,‌ ‌as‌ ‌follows:‌ ‌ 

E‌deposited‌‌ ‌=‌ ‌stopping‌ ‌power‌ ‌x‌ ‌ρ‌si‌ ‌‌x‌ ‌thickness‌ ‌ 

‌.012 0.06cm 22.9 keVEdeposited = 3 g
MeV cm2

× cm3
2.34g ×   = 4  

Since‌‌an‌‌electron‌‌with‌‌15‌‌MeV‌‌energy‌‌deposits‌‌422.9‌‌keV,‌‌we‌‌must‌‌calculate‌‌the‌‌                           
number‌ ‌of‌ ‌pairs‌ ‌electron/hole‌ ‌ 

‌ 

‌22.9keV4 × 1
2.36eV = 1.79x105 e

h  

‌ 

How‌ ‌many‌ ‌pixels‌ ‌will‌ ‌be‌ ‌able‌ ‌to‌ ‌excite‌ ‌   ‌pairs‌ ‌of‌ ‌e/h?‌ ‌1.79x105  

‌ 

‌ ‌x 16 pixels1.79x105 1
250 = 7   

‌ 

Solutions‌ ‌b‌ ‌ 

The‌ ‌number‌ ‌of‌ ‌electrons‌ ‌entering‌ ‌the‌ ‌detector‌ ‌area‌ ‌is:‌ ‌ 

‌ ‌lux  area  tf ×   ×     

‌  .03s 0.42ecm s2
600 e × 1.3  .3[ × 1 ] cm2 × 0 = 3 −  

30.42‌‌electrons‌‌enter‌‌the‌‌detector‌‌area,‌‌and‌‌we‌‌know‌‌that‌‌one‌‌electron‌‌excites‌‌                         
716‌ ‌pixels,‌ ‌the‌ ‌total‌ ‌number‌ ‌of‌ ‌excited‌ ‌pixels‌ ‌is:‌ ‌ 

‌16 0.42 electrons .18 pixels7 pixels
electron × 3 = 2 × 104  

If‌ ‌the‌ ‌CCD‌ ‌has‌ ‌a‌ ‌total‌ ‌of‌ ‌1024x1024‌ ‌pixels‌ ‌=‌ ‌ ‌then‌ ‌the‌ ‌total‌‌                    .048x10 pixels1 6        
percentage‌ ‌of‌ ‌pixels‌ ‌that‌ ‌will‌ ‌be‌ ‌driven‌ ‌in‌ ‌a‌ ‌single‌ ‌image‌ ‌is‌ ‌~‌ ‌2.07%‌ ‌ 



 
 
 
 

TQ14: Formation of the Vennus (35 points) 

A comet of mass 𝞪m is heading ("Falls") radially towards the Sun. It is known that the total 
mechanical energy of the comet is zero. The comet crashes into Venus, whose mass is m. 
We further assume that the orbit of Venus, before the collision, is circular with radius Ro. 
After the crash, the comet and Venus form a single object, called “Vennus”. 

 

 

 

 

 

 

 

 

14.1. Find the expression for the orbital speed, 𝑣# , of Venus before the collision. 

                                                                                                                                              [1 point] 

14.2. Find an expression for the total mechanical energy of Venus in its orbit before 
colliding with the comet.                                                                          [1 point] 

14.3. Find an expression for the radial velocity, 𝑣$ , the angular momentum, 𝐿, and 
angular velocity, ω, of Venus immediately after the collision.                               [10 points] 

14.4. Find an expression for the mechanical energy of the combined object “Vennus" 
and express it in terms of energy before the collision (𝐸') and α.                          [5 points] 

14.5. Show that the post-collision orbit of “Vennus” is elliptical and determine the semi-
major axis of the orbit.                                                                                                    [5 points] 

14.6. Determine if the year for the “Vennusians” has been shortened or lengthened 
because of collision with the comet.                                                                       [3 points] 

 

 

 

 



 
 
 
 

14.7. What should be the value of α such that the post collision orbit of Vennus would 
make it crash in the Sun? We will call this as α).                                                        [5 points] 

 

14.8. A comet with α = α)  collided with Venus. Calculate the percentage change in the 
magnitude of Venus’ velocity (\delta v) and amount of change in the direction of the 
velocity vector (\delta\theta).                                                                                        [5 points] 
  

Solutions      

14.1. Solution  

Let M be the mass of the Sun, then, equating the gravitational force with the force 
Centripetal  

 

−
𝐺𝑀𝑚
𝑅01

𝑟̂ = −
𝑚𝑣01

𝑅0
𝑟̂ 

𝑣01 =
𝐺𝑀
𝑅0

 

[1 point] 

 

14.2. Solution  

The mechanical energy of Venus (before collision) is: 

𝐸' = −
𝐺𝑀𝑚
𝑅01

	+
1
2
𝑚𝑣01 	= 	−

𝐺𝑀𝑚
2	𝑅01

	 

[1 point] 

14.3. Solution  

Since the comet (when far away) moves radially towards the sun, it has no angular 
momentum (with respect to the origin in the Sun). Then the angular momentum of 
Venus is the same as Venus 

𝐿 = 𝑅0𝑚𝑣0 

[1 point] 



 
 
 
 

This allows us to find the component angular of the Venus velocity just after the 
collision. The angular momentum just after the collision is 

 

𝐿 = 𝑅0(𝑚 + α𝑚)𝑣: 

[2 points] 

Since the angular momentum is conserved it follows that 

𝑣: =
;<
=>?

                                                                                            [2 points] 

The conservation of the linear momentum in the radial direction must be realized that the 
interaction between Venus and the comet are internal forces and, therefore, to calculate 
the velocity of the comet we can ignore the effect introduced by the interaction between 
the comet and Venus. The comet has zero energy, so 

 

𝐾 = −𝑈 = + BC?D
E<

= =
1
α𝑚𝑣)1                                                       [2 points] 

v is the velocity of the comet just before the collision ignoring the effect introduced by 
Venus). It follows that 

𝑣F1 =
1BC
E<

                                                                                            [1 point] 

We now apply the conservation of linear momentum along the radial direction   

α𝑚𝑣F = (𝑚 + α𝑚)𝑣$                                                                                                    [1 point] 

where vr is the velocity of Vennus just after the collision. It follows that 

𝑣$ =
?
=>?

𝑣F                                                                                                                     [1 point] 

14.4. Solution  

Vennus mechanical energy (we evaluate it just after the collision) is:  

𝐸G = 𝑈 +𝐾 = −BCD(=>?)
E<

+ =
1
𝑚(1 + α)H𝑣I

1 + 𝑣$1J                                             [2 point] 

 

= −(1 + α) BCD
E<

+ =
1
(1 + α) K2 L ?

=>?
M
1
+ =

(=>?)N
O BCD

E<
                                         [2 point] 



 
 
 
 

 

= −BCD
1E<

L=>P?
=>?

M = 𝐸' L
=>P?
=>?

M                                                                                      [1 point] 

14.5. Solution  

¨Vennus¨ orbit is obviously no longer a circle. Since the energy is negative it must, 
therefore, be elliptical. It has to 

QR
QS
=

TS
TR
=

TS
E<

                                                                                     [2 point] 

Here ai and af are the semi-major axes of the orbits of Venus and Vennus, respectively. It 
follows that 

𝑎G = 𝑅0
QR
QS
= 𝑅0

=>?
=>P?

                                                                                                 [3 point] 

14.6. Solution 

Using Third law is Kepler, we have  

𝑇W

𝑇
= X

𝑎G
𝑟0
Y
Z/1

= X
1 + α
1 + 4α

Y
Z/1

 

the year is shortened. 

 

14.7. Solution   

For the ‘Vennus’ to collide with the Sun, the perihelion radius of post-collision orbit 
should be  

r^ = R⊙ = 6.955 × 10gm 

=	
6.955 × 10g

0.723x1.496 × 10==
R0 

[1 point] 

r^ = 0.00643R0 

     [0.5 points] 

𝑟T = 𝑅0 

 [0.5 points] 



 
 
 
Hence  

 

 

am = Hr^ + rnJ/2 = 0.5032R0 

       [1 point] 

 

𝑎)
𝑅0

= 0.5032 =
1 + α)
1 + 4α)

 

α) =
1 − 0.5032

4 × 0.5032 − 1
 

α) = 0.4905 

 

[2 points] 

 

14.8. Solution 

For post-collision orbit, 

𝑣: =
1

1 + α)
𝑣0 

𝑣$ =
√2α)
1 + α)

𝑣0 

𝑣G = p𝑣$1 + 𝑣:
1 

vr =
s2αm1 + 1
1 + αm

v0 

 

  

  [1 point] 

 

 



 
 
 
 

Thus,  

δ𝑣 = 𝑣0 − 𝑣G 

= u1 −
s2α)1 + 1
1 + α)

v 𝑣0 

 

= (1 − 0.8165)𝑣0 = 0.1835𝑣0 

 

= 0.1835x
6.674 × 10 − 11 × 1.998 × 10Z0

0.723 × 1.496 × 10==
 

δ𝑣 = 0.1835𝑣0 = 6.44𝑘𝑚/𝑠 

    [2 points] 

 

δθ = tan~= X
𝑣$
𝑣:
Y 

= tan~=H√2α)J 

δθ = 	34.74°	 

[2 points] 
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TL15: Cosmic Strings (55 points) 
 
Introduction 
 
According to our current understanding, just after the Big Bang, when the Universe was 
extremely hot, electromagnetic force, strong nuclear force as well as weak nuclear force 
were unified as one Grand Unified (GUT) force.  
When the Universe cooled down to 𝑇"#$ = 10()	𝐾, the strong nuclear force decoupled from 
the electroweak force. Later, when the temperature reduced to 𝑇,- = 10./	𝐾, the weak 
force decoupled from the electromagnetic force. These transitions happened in a rapid 
succession within a small fraction of a second after the Big Bang. However, it is thought that 
these phase transitions produced a variety of peculiar objects, called vacuum defects, which 
may still be observed today. 
This question will discuss properties of one such possible type of defect called cosmic strings 
and their observational effects. 
 

 
  
 
 
 
 
 

 



 
 
 
 

 
 

2 

 
PART A: 
Gravitational Field of a Cosmic String (22p) 
 
As a first approximation, let us consider a cosmic string as an infinitely long cylinder of radius 
𝑟1 and mass per unit length 𝜇. 

 
Write an expression in terms of the distance from the center of the string, 𝑟,  and the 
constants 𝐺, 𝜇, and  𝑟1 for: 
 
A.1 the gravitational field produced by the string,  𝑔⃗(𝑟). Consider the cases 𝑟1 < 𝑟,  and 𝑟1 >
𝑟, independently. [6 points] 
 
A.2 𝑔1 ≡ |𝑔⃗(𝑟1)|. [1 point] 

 
A.3 Draw a rough sketch of 𝑔⃗(𝑟). 𝑟̂	vs. 𝑟, in the figure given in the answer sheet [3 points] 
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A.4 It is possible to define a stable orbit around a Cosmic String. For circular orbits of radius 
𝑅 > 𝑟1 and period 𝜏 , the following relation is attained 

𝑅 = 𝐴	𝜏A, 
where 𝐴 and 𝛼 are constants. Find 𝐴 and 𝛼 in terms of 𝐺 and 𝜇. [4 points] 
 
For the following three questions, consider only the classical regime. A particle has speed 𝑣 
at a distance 𝑅 > 𝑟1from the string.  
 
A.5* Show that the gravitational potential energy of the particle, is [3	𝑝𝑜𝑖𝑛𝑡𝑠] 

𝑈 = 𝐺𝑚𝜇 ln(𝑅) + 𝑢 
where 𝑢 is a constant. 
 
A.6 What is the maximum distance, 𝑅TUV, from the string that the particle can reach? [4 
points] 
 
A.7 Is it possible for the particle to escape the gravitational field?  Write YES/NO in the answer 
sheet. [1 point] 

 
*HINT: You may need the following result 

W
𝑑𝑥
𝑥 = ln(𝑥) + 𝛾, 

where 𝛾 is an unknown constant. 
 

 

PART B: 

𝑔1 

𝑟1 
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Cosmic string as a photon gas (17P) 
 
We now consider a more detailed model: A cosmic string as a very long cylinder of radius 𝑟1  
and conducting walls filled with a photon gas in thermal equilibrium at temperature 𝑇.   
 
B.1 What is the energy density 	𝜌 of the string in terms of 𝑇, ℏ, 𝑘^ and 𝑐? [2 points] 
 
B.2 The radius 𝑟1 is related with the temperature	𝑇 as 

𝑟1 = 	
ℏ`a𝑐`b
𝑘^𝑇

, 

where ℏ	is the reduced Planck constant, and 𝑐	 is the speed of light in vacuum, 𝑘^ is 
the Boltzmann constant, and 𝑛., 	𝑛(are integer numbers. Determine 𝑛.and 𝑛(. [4 points] 
 
B.3 What is the mass per unit length, 𝜇, of the string in terms of 𝜌	and 𝑟1? [2 points] 
 
B.4 Express the inequality for the weak field condition 

2𝐺𝜇
𝑐(	 ≪ 1, 

only in terms of 𝑇 and 𝑇ef. [5 points] 
 
 
 
B.5 Calculate ("g

hb	
  for[3p] 

i. 𝑇 = 𝑇,-   
ii. 𝑇 = 𝑇"#$  

  
B.6 Does the weak field condition hold… 

i. for	𝑇,-? [0.5 points] 
ii. for 𝑇"#$? [0.5 points] 

 
 
Note: You may use the following constants  
 

• Stefan-Boltzmann Constant 

𝜎 =
2𝜋/𝑘^k

15	ℎn𝑐(	 =
𝜋(𝐾^k

60	ℏn𝑐(. 
• the reduced Planck constant 

ℏ = 	
ℎ
2𝜋. 

• Universal Radiation Constant  

𝑎 =
4𝜎
𝑐 = 7.5657× 10t.uJ.mtn. Ktk 

•  Planck Temperature 

	𝑇ef = y
ℏ𝑐/

𝐺𝑘^(	
= 1.416784 × 10n(K 
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PART C: 
Gravitational Lensing from cosmic Strings (16P) 
 
So far, in part A and B, we have neglected the internal pressure of the photon gas inside the 
string. If we include it in our analysis, we need to consider the General Theory of relativity.  
After solving the Einstein field equations, one finds that the spacetime around a cosmic 
string is conical as if a narrow wedge were removed from a flat sheet and the edges 
connected, as shown below. 
 

 
Source: http://www.ctc.cam.ac.uk/outreach/origins/cosmic_structures_five.php 

 
A remarkable result of this model is light deflection by a cosmic string, which leads to the 
possibility of detection through gravitational lensing. For instance, Strings moving across the 
line of sight will cause line-like discontinuities in the CMB radiation. 
 
The angle of deflection (in radians) of a light ray coming from a distant quasar (O in the 
figure below), as the light passes close to a cosmic string (S in the figure below) and 
eventually reaching an observer on the Earth, (E in the figure below), is 

𝛿𝜙 =
4𝜋𝐺𝜇
𝑐(  

and is independent of the impact parameter, p.  
 
In the figure E and O are in a plane perpendicular to the string. The distance between the 
observer and the string is 𝐷,~  and the distance between the observer and the source is 𝐷�,. 
 
 
 
 
 
 
 
 
 
 
 
 

E S 

O 

p 
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C.1 Find a condition on the value of the impact parameter 𝑝 in terms of 𝐷,~, 𝐷�,  and 
temperature 𝑇, for an Earth-based observer to see more than one image of the object O. [6 
points] 
C.2 In case the observer sees more than one image, what is the angular separation between 
each pair? Find an expression in terms of 𝐷,~, 𝐷�,  and 𝛿𝜙 [6 points] 
C.3 If 𝐷�, = 2𝐷,~, determine the minimum size of an optical telescope needed to resolve 
this lensing event produced by GUT string. [4 point] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution 
 
A.1 The gravitational field, which direction  is radial 

𝑔⃗ = 𝑔⃗(𝑟) = 𝑔(𝑟)	𝑟̂ = 𝑔	𝑟̂, 
can be computed from the Gauss law for the gravitational field: 

Φ� = −4𝜋𝐺𝑀, 
where Φ� is the flux of the gravitational field through a cylinder of radius 𝑟 and length 𝐿, as 
shown in the figure, and 𝑀 is the enclosed mass. 
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Φ� = −4𝜋𝐺𝑀 

[2points] 
2𝜋𝑟𝐿𝑔 = −4𝜋𝐺𝑀 

𝑔 = −
2𝐺𝑀
𝑟𝐿  

[1 point] 
 
There are two regimes: 

• 𝑟 > 𝑟1:  
→ 𝑀 = 𝜇𝐿 

and 
 

𝑔 = −
2𝐺𝜇
𝑟  

 [1.5 points] 
• For the other regime, 𝑟 < 𝑟1: 

→ 𝑀 =
𝑟(

𝑟1(
𝜇𝐿 

  and  

𝑔 = −
2𝐺𝜇
𝑟1

�
r
r1
� 

[1.5 points] 
The final answer is 

𝑔⃗(𝑟) =

⎩
⎨

⎧−
2𝐺𝜇
𝑟1

�
r
r1
� 𝑟̂, 		𝑟 < 𝑟1

−
2𝐺𝜇
𝑟 𝑟̂, 		𝑟 > 𝑟1

 

A.2 Writing 𝑔⃗(𝑟1), in terms of in terms of 𝐺, 𝜇  and 𝑟1[ 1 point] 

𝑔⃗(𝑟1) = −
2𝐺𝜇
𝑟1

𝑟̂ 

𝑔1 ≡ |𝑔⃗(𝑟1)| =
2𝐺𝜇
𝑟1

 

 
 
A.3 Plot	𝑔 ≡ 𝑔⃗(𝑟). 𝑟̂	vs 𝑟 -> 0.5 point each 

• (0,0) 
• (1,-1) 
• (5,-0.2) 
• Linear between (0,0) and (1,-1) 
• ∼ .

�
, for 𝑟 > 𝑟1 

• Below x axis 
 
 
 
 

𝑔1 
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A.4 The centripetal acceleration equals the gravitational acceleration, thus 

𝑣(

𝑅 =
2𝐺𝜇
𝑅 		[1𝑝] 

2𝜋𝑅
𝜏 = �2𝐺𝜇		[1𝑝] 

𝑅 =
�2𝐺𝜇
2𝜋 𝜏 

𝐴 = �("g
(�

, [1p] and 𝛼 = 1 [1p]. 
 
A.5 The potential energy of the particle is given by  

𝑈 = 𝑚W𝑔(𝑟)𝑑𝑟	 = 𝐺𝑚𝜇W
1
𝑟 𝑑𝑟	

[𝟐𝒑] 

 
𝑈 = 𝐺𝑚𝜇 	ln(𝑟) + 𝑢	[𝟏𝒑] 

Where 𝑢 is a constant that sets the 0 of 𝑈.  
Usually, 𝑈=0 is set at r = ∞, however for a cosmic string this is not possible. 
 
We can choose 𝑈=0, for example, at the surface of the string 𝑟 = 𝑟1 (this choice is not 
relevant!). Thus 

𝑢 = −𝐺𝑚𝜇 	ln(𝑟1) 
and 

𝑈 = 𝐺𝑚𝜇 	ln �
𝑟
𝑟1
� 

 
 
A.6 The total energy of the particle is conserved, thus: 

1
2𝑚𝑣

( + 𝐺𝑚𝜇	 	ln �
𝑅
𝑟1
� = 𝐺𝑚𝜇	 	ln �

𝑅TUV
𝑟1

� [2𝑝] 

Solving for 𝑅TUV: 
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𝑅TUV = 𝑅𝑒
�b
("g	[2p] 

 
As mentioned before, the answer does not depend on 𝑟1 
 
Note: 

𝑈 = 𝐺𝑚𝜇 ln �
𝑟
𝑟1
� 

holds only for 𝑟 > 𝑟1	. 
 
 The potential inside the string is  

𝑈 = 𝐺𝑚𝜇
𝑟(

𝑟1 − 𝑢
�, 

where 𝑢� = −𝐺𝑚𝜇, such that 𝑈 = 0 at the surface of the string. However, for the solution of 
the problem it is not necessary to show this. 

𝑈 =

⎩
⎪
⎨

⎪
⎧2𝐺𝜇 ��

r
r1
�
(
− 1� 	, 	𝑟 < 𝑟1

2𝐺𝜇	 	ln �
𝑟
𝑟1
� , 	𝑟 > 𝑟1

 

 

  
A.7 From the previous result,  

𝑅TUV = 𝑅𝑒
�b
("g, 

we see that it is not possible to escape the gravitational field since for any speed, there is 
always a maximum distance 𝑅TUV	[1p] 
 
 
B.1 The energy density is given by 

𝜌 = 𝑎𝑇k[𝟏𝒑] 
Equivalently: 

𝜌 =
4𝜎
𝑐 𝑇k =

𝜋(𝑘^k

15	ℏn𝑐n 𝑇
k[𝟏𝒑] 

Note: These result comes from the integration of the spectral energy density given by the 
Planck law over all frequencies' 𝜈. However it is not required to show this integral. 
 
B.2  

𝑟1 =
ℏ`a𝑐`b
𝑘^𝑇

 

• 𝑟1 has dimensions of lenght : [𝑙]  
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• ℏ has dimensions of energy × time: [e	𝑡]	 
• 𝑐 has dimensions of speed: [𝑙/𝑡]  
• 𝑘^𝑇 has dimensions of energy: [𝑒]	 

Then: 

[𝑙] =
[𝑒	𝑡]`a �𝑙𝑡 

`b

[𝑒]  

Since the LHS and the RHS should have the same dimensions we get: 
[𝑙]: 1 = 𝑛( 

[𝑒]: 0 = 𝑛. − 1 
[𝑡]: 𝑛. = 𝑛([2𝑝] 

The unique solution is n. = n( = 1[1+1] 
 
B.3 The energy  of a piece of the string of length 𝐿 is 

𝐸 = 𝜌𝜋𝑟1(𝐿 = 𝑀𝑐(, [𝟏𝒑] 
where 𝑀	 = 𝜇	𝐿 is the mass of the piece. Solving for 𝜇:  

𝜇 =
𝜌𝜋𝑟1(

𝑐( [𝟏𝒑] 
 
B.4 The weak field condition is 

2𝐺𝜇
𝑐(	 ≪ 1	 

 

2𝐺
𝜌𝜋𝑟1(

𝑐( 	 ≪ 1 

2𝐺
𝜋
𝑐(
(𝑎𝑇k) �

ℏ𝑐
𝑘^𝑇

�
(

=
2𝐺𝑎ℏ(𝜋
𝑘^(

𝑇( ≪ 1[𝟑𝒑] 

Where we used:  𝜇 = ¤��¥b

hb
,  𝜌 = 𝑎𝑇k, 𝑟1 =

ℏh
¦§$

 

 
2𝐺𝑎ℏ(𝜋
𝑐(𝑘^(

	𝑇( ≪ 1 

2𝐺ℏ(𝜋
𝑐(𝑘^(

�
𝜋(𝑘^k

15	ℏn𝑐n� 	𝑇
( ≪ 1 

2𝜋n

15 �
𝐺𝑘^(

	ℏ𝑐/� 𝑇
( ≪ 1 

2𝜋n

15 	
𝑇(

𝑇ef(
≪ 1[𝟐𝒑] 

where 𝑇ef = 1.416784 × 10n(K (known as the Planck Temperature) 

Note the numerical factor (�
¨

./
	 ∼ 4.13, (a 5% error tolerance is accepted) 

 
B.5 The weak field condition is  

4.13�
𝑇
𝑇ef
�
(

≪ 1	 

equivalently 
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∼ 2
𝑇
𝑇ef

	 ≪ 1[𝟏𝒑] 

 

i. ($©ª
$«¬

∼ 2× .1a­

.1¨b
≈ 1.4×10t.¯ ≪ 1 [1p] 

ii. ($°±²
$«¬

∼ 2× .1b³

.1¨b
≈ 1.4×10tn ≪ 1 [1p] 

 
Note: Using the following expresion	

4.13�
𝑇
𝑇ef
�
(

≪ 1	 

One gets 

i. 4.13 ´$©ª
$«¬
µ
(
∼ 2.1×10tnk ≪ 1 

ii. 4.13 ´$°±²
$«¬

µ
(
∼ 2.1×10tu ≪ 1 

And are also acceptable answers (a 5% error tolerance is accepted) 
 
B.6 

i. Does it hold for 𝑇,-? Yes[0.5] 
ii. Does it hold for 𝑇"#$? Yes[0.5] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
C.1 From the figure, the asymptotic condition for the observer to see a second image is that 
the light ray travelling from O directly to S should bend and travel along SE. This is the 
maximum angle of bending. 
As all angles are small, we can safely use 

sin 𝑥 ≈ tan 𝑥 ≈ 𝑥 
Now, 

𝑝
𝑆𝑃 < 𝛿𝜙[𝟐𝒑]	

							<
4𝜋𝐺𝜇
𝑐( 	

							< 2𝜋 �
2𝐺𝜇
𝑐( � 	 
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																											< 2𝜋 �
2𝜋n

15 ��
𝑇(

𝑇ef(
� [𝟐𝒑]	 

And 𝑆𝑃 ≈ (𝐷�, − 𝐷,~) 
 

𝑝 <
4𝜋k

15𝑇ef(
𝑇((𝐷�, − 𝐷,~)	[𝟐𝒑] 

 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
C.2 In the figure, the blue lines represent the bending of two light rays corresponding to the 
images O1 and O2 
Note that 𝐷,~ ≈ 𝐷,~. ≈ 𝐷,~(  and 𝐷�~ ≈ 𝐷�~. ≈ 𝐷�~(. Thus the angles 𝑆1𝐸𝑂 ≈ 𝑆2𝐸𝑂 ≡ 𝛼 
and 𝑆1𝑂𝐸 ≈ 𝑆2𝑂𝐸 ≡ 𝛽. 2𝛼 is the angular separation we are looking for 
[2 points] 
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Further, notice  

𝛼 + 𝛽 = 𝛿𝜙	[𝟏𝒑] 
 
Applying sine law 

𝛼
𝐷~.�

=
𝛽
𝐷,~.

[𝟏𝒑] 

 
we get  

2𝛼 = 2𝛿𝜙 �
𝐷�, − 𝐷,~

𝐷�,
�	[𝟐𝒑] 

  
 
 
 
 
 
 
 
 
 
C.3 If 𝐷�, = 2𝐷,~,  

2𝛼 = 𝛿𝜙 = 2𝜋 �
2𝜋n

15 ��
𝑇"#$(

𝑇ef(
� ≈ 1.29 × 10t/[𝟐𝒑] 

and 
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𝛿𝜙 = 1.22
𝜆
𝐷 

Thus, using 𝜆 ∈ [3 × 10t¯𝑚, 8 × 10t¯𝑚] 

𝐷 = 1.22
𝜆
𝛿𝜙 ∈

[3.75 × 10t(𝑚, 7.51 × 10t(𝑚][𝟐𝒑]	

	𝐷 = 1.22
𝜆
𝛿𝜙 ∈

[3.75𝑐𝑚, 7.51𝑐𝑚][𝟐𝒑] 

Any answer within this interval is valid. 
 
 
 
 
 
 
  


